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ABSTRACT 
PhotoMesa is a zoomable image browser that uses a novel 
treemap algorithm to present large numbers of images 
grouped by directory, or other available metadata.  It uses a 
new interaction technique for zoomable user interfaces 
designed for novices and family use that makes it 
straightforward to navigate through the space of images, 
and impossible to get lost. 
PhotoMesa groups images using one of two new algorithms 
that lay out groups of objects in a 2D space-filling manner.  
Quantum treemaps are designed for laying out images or 
other objects of indivisible (quantum) size.  They are a 
variation on existing treemap algorithms in that they 
guarantee that every generated rectangle will have a width 
and height that are an integral multiple of an input object 
size.  Bubblemaps also fill space with groups of quantum-
sized objects, but generate non-rectangular blobs, and 
utilize space more efficiently. 
Keywords 
Zoomable User Interfaces (ZUIs), Treemaps, Image 
Browsers, Animation, Graphics, Jazz. 
INTRODUCTION 
There has been much work in recent years on information 
retrieval systems for multimedia, including systems 
concentrating on images.  However, these systems focus on 
specifying queries or presenting results in a manner that 
helps users quickly find an item of interest.   For image 
searches, in particular, there has been relatively little work 
on new interfaces, visualizations, and interaction 
techniques that support users in browsing images.   
Image browsing is important for a number of reasons.  First 
of all, no matter what information retrieval system is being 
used, the user has to browse the results of the search.  It is 
certainly important to build query systems that help users 
get results that are as close to what is wanted as possible.  
But there will always be images that need to be browsed 
visually to make the final pick. 

 

Figure 1: Screen snapshot of PhotoMesa with over 500 
images in 17 groups. 

Most image browsing systems present the images as a grid 
of thumbnails that the user can scroll through with a 
vertical scrollbar, and see a high resolution version of the 
image with some mouse interaction. There are also a few 
alternative designs, such as manually constructed digital 
photo albums, and one commercial zoomable image 
browser. 
A second reason for needing new image browsers is more 
subtle, and was actually my primary motivation for doing 
the present work.  Sometimes, people browse images just 
for the pleasure of looking at those images, and they often 
do it with other people. This is especially true for personal 
photos.  As people take more digital family pictures, we 
need better tools to support users in home settings as they 
look at those pictures together on a computer screen.  
Looking at home photos has a lot of overlap with 
traditional retrieval systems.  People still want to be able to 
find photos of particular people and events, etc.  However, 
they are less likely to be time pressured to find a particular 
photo, and more likely to be interested in serendipity – that 
is, finding photos they weren’t looking for [6]. 

http://www.cs.umd.edu/hcil/photomesa
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I found I needed better tools to look at pictures with my 
two-year-old daughter.  I did not want to spend the time to 
make custom “albums”.  In addition, I found using 
traditional software with a grid of thumbnails, scrollbars, 
and popup viewer windows unpleasant in this context.  I 
wanted to concentrate on the images – and more 
importantly, as I was looking at the photos with my 
daughter, it was crucial that she be an active part of the 
interaction, and not just a passive bystander. 
Motivated by the need of a tool that would support 
browsing of images with my family, I started to investigate 
techniques for presenting collections of images or other 
visual data.  While much work has been done on 
visualizing complex datasets, surprisingly few techniques 
are available for presenting images.  My goal was to come 
up with a mechanism that would be able to lay out groups 
of images automatically in a way that would offer a simple 
interface to browse while giving access to a large set of 
images and their context. 
To this end, I developed PhotoMesa, a zoomable image 
browser that organizes images in a two-dimensional grid, 
where images with a shared attribute (such as directory 
location, nearness in time, or a shared word in their 
filename) are grouped together (Figure 1).  It uses zooming 
and simple interaction techniques to make navigation 
straight-forward, and to eliminate the possibility of getting 
lost.  In building PhotoMesa, I kept the following design 
goals in mind: 

• Simple to use (interaction should focus on images, 
there should be no overhead to get started, and any 
layout should be entirely automatic) 

• Work well for family-use settings, encouraging 
shared co-present use 

• Support collections of photos, and use screen 
space efficiently 

To lay out the groups of images automatically, I ended up 
developing two new algorithms, called quantum treemaps 
and bubblemaps.  Quantum treemaps are a variation on 
existing treemap algorithms [21].  Treemaps are a family of 
algorithms that partition two-dimensional space into 
regions that have an area proportional to a list of requested 
areas.  The problem with existing treemap algorithms is 
that they return areas of arbitrary aspect ratios.  A 
requirement of photo display is that the regions that show 
groups of photos must have dimensions that are integer 
multiples of the dimensions of the photos – that is, they 
must be sized to contain quantum, or indivisible contents.  
The use of treemaps to display images is the first known 
use of treemaps to display visual content, such as images, 
rather then just using the size and color of the rectangles to 
visualize two numerical attributes of a dataset. 
The bubblemap algorithm generates non-rectangular 
groups.  The groups are generated with a grid-based 
recursive fill algorithm.  They fill all the cells in a grid 

leaving almost no unused space, and generate groups of 
images that are approximately rectangular or circular. 
This paper describes PhotoMesa and the quantum treemap 
and bubblemap layout algorithms. All the software 
described in this paper is written in Java 2, is fully 
functioning as described, and is available at 
http://www.cs.umd.edu/hcil/photomesa. 
RELATED WORK 
As mentioned previously, the standard way to let users 
browse a set of images is with a grid of thumbnails with a 
vertical scrollbar.  Clicking on an image thumbnail usually 
brings up a window with the high-resolution version of the 
image.  The user then has to manage the open windows 
manually, and close them when they are no longer needed.  
One good commercial example of this approach is ACDSee 
which offers a clean interface and fast interaction [1]. 
This approach has been extended by a research group at the 
University of Maryland developing PhotoFinder [16, 22].  
It lets users organize photos into “collections” which are 
displayed with a representative image that the user selects.  
The interface first shows collections, and selecting a 
collection displays a traditional grid of thumbnails.  
PhotoFinder avoids the problem of window management, 
by displaying high-resolution photos in a pane within the 
interface.  The PhotoFinder project concentrates on 
interfaces for managing and searching a database of meta 
information, but the browsing interface is essentially a 
polished traditional approach. 
Document Lens is a technique that uses 2D fisheye 
distortion to present a grid of thumbnails of documents 
with a mechanism to zoom one document up to a readable 
size in place [18].  Document Lens, however, presents just 
a single collection of objects at a time. 
Others have looked into automated algorithms for 
clustering semantically related information, and presenting 
the results visually.  Hascoët-Zizi and Pediotakis built such 
a system for a digital library retrieval system, showing the 
available thesaurus as well as results of searches [14].  Platt 
has built a system for automatically clustering photos, and 
extracting representative photos for each cluster [17]. 
Several groups have investigated applications of images for 
story telling or sharing in the home.  The Personal Digital 
Historian project at MERL is building a circular display on 
a tabletop intended for several people to interact with 
images together.  The design includes search by several 
kinds of metadata, but the mechanism for interacting with 
many images was not described in detail [20].  This is an 
example of support for co-present use which is a theme 
described in some of the author’s prior work [23]. 
A group at Ricoh is building a dedicated portable story-
telling device based on the construction of sequences of 
images.  It has a dedicated hardware interface for selecting 
sequences of images which can then be annotated with 
audio, and played back when telling the story associated 
with those images [6]. 
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For a pure software approach, we and others have built 
Zoomable User Interfaces (ZUIs) for image browsing.  
ZUIs are interfaces that present information on a large flat 
space where the user can smoothly zoom into the space to 
see information in more detail, or zoom out to get an 
overview.  ZUIs have the potential advantages that they are 
easy to comprehend, and they give a consistent and easy to 
use interface for getting an overview of the information, 
and seeing more detail. 
An earlier ZUI-based image browser was ZIB (Zoomable 
Image Browser) [11].  ZIB combined a zoomable 
presentation of a grid of images with a search engine (that 
searched metadata), and a history mechanism to access 
previous searches.  However, ZIB provided access to only a 
single group of images, and used manual zooming which 
was difficult to use.  
The approach started in ZIB was continued in a new project 
that is creating an interface for elementary school-aged 
children to find multimedia information in a digital library 
[12].  This project, called SearchKids, presents visual 
results in a zoomable interface with a simpler interaction 
mechanism that PhotoMesa is based on. 
Another ZUI-based image browser is currently available 
commercially by Canon, and is called ZoomBrowser EX 
[2].  The Canon browser presents a hierarchy of images 
(either manually constructed, or imported from a disk 
hierarchy) with containment.  The top level shows a grid of 
squares, each of which contain a grid of image thumbnails 
and/or smaller squares that show more thumbnails, etc.  It 
uses a layout very similar to what we used earlier in the 
Pad++ directory browser [8].  This layout has the 
disadvantage that all directories are the same size, and the 
contents are scaled to fit so that images in large directories 
are scaled small so as to be unreadable. 
The interaction is to click on a square, and the contents of 
the square are smoothly zoomed into.  Clicking on an 
image brings up a traditional high-resolution image viewer 
in a separate window.  Clicking on a special zoom-out 
button zooms out to the next level in the hierarchy.  There 
is also a magnification mode which zooms in a fixed 
amount each click, rather than zooming into the next level 
of the hierarchy. 
PHOTOMESA 
PhotoMesa allows the user to view multiple directories of 
images in a zoomable environment, and uses a set of simple 
navigation mechanisms to move through the space of 
images.  It also supports clustering of images by metadata 
available from the file system.  It requires only a set of 
images on disk, and does not require the user to add any 
metadata, or manipulate the images at all before browsing, 
thus making it easy to get started with existing images. 
PhotoMesa is written entirely in Java 2, and is built using 
the Jazz framework for Zoomable User Interfaces [9].  The 
name PhotoMesa derives from the Spanish word mesa 
which means table, but is commonly used in the US 

southwestern states to describe the natural volcanic 
plateaus which are high and have flat tops.  Standing atop a 
mesa, you can see the entire valley below, much as you can 
see an overview of  many photos in PhotoMesa. 
To start using PhotoMesa, a user opens a directory, or a set 
of directories, and PhotoMesa lays out the directories of 
images in a space-filling manner as shown in Figure 1, 
using a quantum treemap to create one rectangular group 
for each directory. Even though a hierarchical directory 
structure is read in, the images are displayed in a flattened, 
non-hierarchical manner.  The rationale for this is that users 
looking at images are primarily interested in groups of 
photos, not at the structure of the groups.  In addition, the 
interface for presenting and managing hierarchies of groups 
would become more complicated, and simplicity was one 
of the goals of the PhotoMesa. However, this is a design 
characteristic of PhotoMesa, not of the of the treemap 
algorithms which can be applied hierarchically. 
As the user moves the mouse, the group the mouse is over 
is highlighted, and the label is shown in full (it may have 
been clipped if there wasn’t room for it).  Then when the 
user clicks, the view is smoothly zoomed in to that group.  
Now, a highlight showing a set of images under the mouse 
lets the user know which images will be focused on when 
the mouse is clicked again.  The number of images 
highlighted is chosen to be enough to fill about half of the 
screen so that the user will be able to drill down quickly to 
a full-resolution single image.  At any point, the user can 
press the right button (or Enter key) to zoom out to the 
previous magnification.  In addition, the user can double-
click on an image to zoom all the way into that image and 
avoid intermediate zoom levels, or the user can double-
right click to zoom all the way out to the top level. 
The user can also press alt-left/right arrows to move back 
and forth in their history of views.  Or, they can press the 
arrow keys to pan up, down, left or right.  When zoomed all 
the way into a full-resolution image, the arrow keys stay 
within the current group of images, wrapping as necessary.  
When zoomed out so more than one image is visible, the 
arrow keys move across groups to let the user explore the 
entire space. 
At all times, if the cursor is left to dwell over an image 
thumbnail for a short time, that thumbnail is zoomed up 
until it is 200 pixels wide overlaying the other, unchanged 
images (Figure 1).  This preview is immediately removed 
whenever the mouse is moved. 
While it is not necessary for users to do any authoring to 
browse images with PhotoMesa, they are allowed to change 
the color of image groups (although group background 
colors are assigned by default).  This can make it easier to 
make sense of the large display of images since the colored 
areas can act as landmarks which are known to be effective 
navigation aids [15]. 
PhotoMesa supports drag-and-drop to let users directly 
export images to email, or other applications.  Since 
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emailing photos is a significant use, PhotoMesa 
automatically reduces the resolution and quality of images 
when they are dragged out of PhotoMesa.  This resolution 
reduction is controllable through a preference panel. This 
eliminates the need to go through a special processing step 
when emailing images. 
While the support of browsing is the primary goal of 
PhotoMesa, it is also sometimes desirable to find images in 
a specific group, and it can be difficult to scan labels in a 
2D space.  So, a search pane is available that shows all the 
directories in order.  Mousing over a label highlights the 
corresponding group of images, and clicking on a label 
zooms into that group.  In addition, the search pane has a 
search box where users can search for images by words in 
their filename. 
After PhotoMesa was built, and we started using it to 
browse directories of images, I realized that another way of 
thinking about what PhotoMesa was doing was presenting 
a large set of images clustered by directory.  So I then 
added support for clustering by other data.  Since I didn’t 
want to require users to add metadata, PhotoMesa uses 
whatever data is already available in the file system, which 
is just file date and name.  If a user selects view by year, 
PhotoMesa uses the file date to group all the currently 
opened photos by year, and creates a layout with one region 
per year.  It does the same thing for viewing by month. 
Another clustering technique takes advantage of the fact 
that people sometimes give meaningful filenames to their 
images, often with several words per image to describe the 
contents of the image (Figure 2).  If a user selects view by 
“filename words”, it parses the filenames of all of the open 
images, and creates one cluster for each unique word in a 
filename (as tokenized with all the standard delimiters and 
where filename extensions and numeric tokens are 
ignored).  Thus, if an image has 3 words in its filename 
(such as “ben-eats-cake”), then that image will appear in 3 
clusters (one for “ben”, one for “eats”, and one for “cake”). 
PhotoMesa computes multiple sized thumbnails for each 
image, and dynamically loads the appropriate one.  In this 
manner, it maintains good performance, even with large 
numbers of images.  The thumbnails are created the first 
time an image is loaded, and cached in a special directory 
managed by PhotoMesa. 
 
 

Figure 2: A directory of images (left), and the same 
images grouped by filename words (right). 

 

The design of PhotoMesa presents an inherent difference 
compared to traditional scrolling thumbnail grids.  The 
traditional approach has the advantage that it is searchable 
by navigating in one dimension (through vertical scrolling), 
while PhotoMesa requires navigation in two dimensions, 
which is typically harder for users.  However, PhotoMesa 
has the advantage that the user can easily get an overview 
by zooming out.  Through this interaction, the user can 
control the trade-off between the number of images shown 
and their resolution.  This difference is a direct effect of the 
zooming nature of PhotoMesa.  If a vertically oriented grid 
of thumbnails were zoomed out, the space would be mostly 
unused on either side of the linear list, and the display 
space would thus be largely wasted.  Thus, it seems that a 
2D zoomable interface and 1D displays of data are 
inherently incompatible. 
USE OF PHOTOMESA 
I have used PhotoMesa regularly with my two year old 
daughter for several months.  We load in all of our family 
pictures (Figure 1) and sit together in front of a laptop 
computer.  She will point at an area and I click and zoom in 
to it.  I keep zooming in as she points at areas until we get 
all the way in to a single photo.  I then zoom out one level, 
and if she asks to see another photo, I zoom into it.  
Otherwise, I zoom out another level until she sees 
something she is interested in.  In this fashion, we look at 
the photos together, and she is able to stay in control and 
maintains a high level of interest.  The zooming and 
smooth animation make it so that she is clearly able to 
follow what is going on, even though I operate the mouse. 
In addition, over 9,000 people have downloaded 
PhotoMesa from the web.  While this is obviously not a 
controlled study, it has been informative nevertheless.  I 
have received very positive feedback, sometimes 
describing use scenarios I did not originally envision.  One 
designer used it as a “disk mapper” to find out what was on 
her disk.  Another put the software with photos on a CD 
and mailed it to family and friends.  Others have envisioned 
embedding it in a range of applications, from supporting 
hobbyist aquarium logging to web-based photo sharing.  
Perhaps most importantly, several people reported they find 
it ideal to use with their families – supporting my original 
design goal. 
QUANTUM TREEMAPS 
In the course of developing PhotoMesa, I ran into a 
significant problem. I needed an automatic way to lay out 
groups of images in a visually simple manner that filled all 
the available space.  I started to solve this by looking into 
treemap algorithms. Treemaps are a family of algorithms 
that are space-filling partitions of a two-dimensional area.  
Treemaps take as input, a list of n numbers and a rectangle.  
They partition the area into n rectangles, one per input 
number.  The rectangles are guaranteed to fill the input 
rectangle, and each rectangle is proportional in area to a 
number on the input list.  Treemaps are designed to be 
applied hierarchically, so any given resulting rectangle can 
itself contain a treemap, and so on, recursively. 
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In order to build PhotoMesa, I had to extend the treemap 
algorithms to accommodate fixed size images.  To 
understand this, let us start by looking at existing treemap 
algorithms. 
There are two desirable properties that treemap algorithms 
can have: generated rectangles with aspect ratios close to 1 
(i.e., rectangles that are close to squares), and order.   
Here, and for the rest of the paper, aspect ratio is defined as 
max((width / height), (height / width)), so that an 
aspect ratio of 1 is perfectly square, and aspect ratios larger 
than one are more rectangular. Rectangles with aspect 
ratios close to 1 are desirable because, generally speaking, 
they are more visually attractive.  In addition, humans seem 
to be able to estimate the area of a square more accurately 
than a skinny rectangle, and one of the goals of treemaps is 
to use the area of each rectangle to present some useful 
attribute. 
I define order here to mean that a treemap algorithm is 
ordered if the rectangles it generates are laid out in a spatial 
sequence that corresponds to the input sequence.  Not all 
treemap algorithms are ordered, and order is important 
since it is easier for users to find specific items in ordered 
displays.  Rodden has showed the importance of order in 
image browsing [19]. In addition, ordered displays make it 
easier to track items if they change over time since in an 
ordered display, each item will stay in approximately the 
same place on the screen.   
Until recently, there were no algorithms that provided both 
properties. 
Treemap Related Work 
The original treemap algorithm by Shneiderman [21] uses a 
simple “slice and dice” approach.  It divides the input 
rectangle into a single horizontal or vertical list of 
rectangles – each one typically being quite skinny.  If the 
algorithm is applied recursively, the sub-rectangle would 
be split in the opposite orientation as the parent.  This 
algorithm generates ordered rectangles, but they typically 
have extreme aspect ratios. 
An important ensuing treemap algorithm, called squarified 
treemaps, gave up on ordering, but created rectangles with 
smaller aspect ratios [10].  Squarified treemaps work by 
recursively dividing the space in two, and laying out some 
of the rectangle in one part, and the rest of the rectangles in 
the other part, where the list of rectangles is split based on 
optimizing the resulting aspect ratios. A variation of this 
algorithm was independently developed for SmartMoney’s 
MarketMap applet [4].  Recently, Shneiderman and 
Wattenberg introduced ordered treemaps [5] which offer a 
compromise solution where the resulting rectangles are 
ordered, and somewhat squarified, but do not have as good 
aspect ratios as those generated by squarified treemaps.  
Other approaches to space-filling algorithms have been 
considered but they typically do not have all the nice 
properties of treemaps, such as that by Harel and Yashchin 

[13] which does not assign the size of the rectangles to any 
independent variable. 
Treemaps have been applied to a number of domains, from 
visualizing hard disk usage [3] to the stock market [4].  
However, in every current usage of treemaps to date, they 
are used to visualize a two-dimensional dataset where 
typically, one dimension is mapped to the area of the 
rectangles (as computed by the treemap algorithm), and the 
other dimension is mapped to the color of the rectangle.  
Then, a label is placed in the rectangles which are large 
enough to accommodate them, and the user can interact 
with the treemap to get more information about the objects 
depicted by the rectangles. 
Surprisingly enough, there are not any published uses of 
treemaps where other information is placed in the 
rectangles.  PhotoMesa appears to be the first application to 
put images within the area of each treemap rectangle. 
There is a good reason why treemaps have not been used in 
this manner before.  This is because while treemaps 
guarantee that the area of each generated rectangle is 
proportional to an input number, they do not make any 
promise about the aspect ratio of the rectangles. Some 
treemap algorithms (such as squarified treemaps) do 
generate rectangles with better aspect ratios, but the 
rectangles can have any aspect ratio.  While this is fine for 
general purpose visualizations, it is not appropriate for 
laying out images because images have fixed aspect ratios, 
and they do not fit well in rectangles with inappropriate 
aspect ratios. 
Let us look at applying existing treemap algorithms to 
laying out fixed size objects, such as images.  For now, let 
us assume without loss of generality that the images are all 
square.  We will see later that this does not affect layout 
issues.  Given a list of groups of images to lay out, the 
obvious input to the treemap algorithm is the number of 
images in each group.  The treemap algorithm will generate 
a list of rectangles, that each need the corresponding 
images to be laid out within. 
For each rectangle and group of images, the first step is to 
decide on the dimensions of a grid with which to lay out 
the images in the rectangle.  Given the aspect ratio of the 
rectangle, we compute the number of rows and columns 
that best fit the images. 
The resulting grid may have more cells than there are 
images, but will not have any empty rows or columns.  This 
layout, however, is not guaranteed to fit in the rectangle.  
For example, consider a rectangle that was computed to 
hold a single image.  It will have an area of 1.0, but could 
be long and skinny, perhaps with a width of 10.0 and a 
height of 0.1.  The obvious solution is to scale down the 
images just enough to fit in the bounds of the rectangle. 
Herein lies the problem.  Since each group of images has to 
fit in to a separate rectangle, each group of images will 
have to potentially be scaled down.  This will result in each 
group of images being a different size.  Furthermore, since 
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the rectangles are arbitrarily sized and positioned, and the 
images are scaled, the resulting groups of images will not 
align with each other in a visually attractive way. 
It is standard graphic design practice to align content in a 
way that makes it easy for the eye to quickly scan different 
areas.  If each group of images is a different size and they 
are not aligned, this will make the resulting layout less 
attractive, and may make it slower for a user to quickly 
scan.  See Figure 4 for the result of laying out a simple 
sequence of images using the ordered treemap and quantum 
treemap algorithms to see the difference in overall layout.  
Note how with the ordered treemap, group #4 consisting of 
a single image is scaled much smaller than the other 
images.  With the quantum treemap algorithm, all images 
are the same size, and all images are aligned on a single 
grid across all the groups. 
Ordered Treemaps 
To understand the quantum treemap algorithm, it is 
necessary to first understand the basics of the ordered 
treemap algorithm because the former is a direct 
modification of the latter. 
The ordered treemap algorithm, as with all treemap 
algorithms, take as input and produces output: 
Input L1…Ln An ordered sequence of numbers. 
 Box A box to lay out the rectangles within. 
Output R1…Rn An ordered sequence of rectangles that 

completely fill Box, and where the area 
of Ri is proportional to Li. 

The algorithm is similar to QuickSort.  It chooses a pivot, 
LP, and places it in Box.  It then recursively lays out 
L1…LP-1 on one side of the pivot, and LP+1…Ln on the other 
side of the pivot.  Figure 3 shows the basic visual strategy 
for a horizontal layout.  A corresponding approach is used 
for a vertical layout. 
The ordered treemap algorithm is described in detail in [5], 
and is summarized here.   

1. If n == 1, then return a rectangle R = Box and stop. 
2. Choose a pivot element, LP.  Pivot selection 

strategies include picking the middle element or 
the largest one. 

3. Calculate R1 so that its height fills Box, and so that 
its width is large enough to contain LA = L1…LP-1.   

4. Split LP+1…Ln into two sublists, LB and LC that will 
be laid out in R2 and R3.  Calculate where the 
splitting point is so that RP has an aspect ratio 
closest to 1. 

5. Calculate RP, R2 and R3.  This is performed by 
using the ratio between the size of the 
corresponding lists, and breaking up the available 
space by the same ratios. 

6. Recursively apply the ordered treemap algorithm 
to LA in R1, LB in R2, and LC in R3. 

This algorithm results in rectangles that are fairly square, 
and are ordered approximately left to right (or top to 
bottom in a vertically oriented box). 
Quantum Treemap Algorithm 
The goal of the quantum treemap algorithm is similar to 
other treemap algorithms, but instead of generating 
rectangles of arbitrary aspect ratios, it generates rectangles 
with widths and heights that are integer multiples of a 
given elemental size.  In this manner, it always generates 
rectangles in which a grid of elements of the same size can 
be laid out.  Furthermore, all the grids of elements will 
align perfectly with rows and columns of elements running 
across the entire series of rectangles.  It is this basic 
element size that can not be made any smaller that led to 
the name of quantum treemaps. 
The quantum treemap (QT) algorithm is based directly on 
the ordered treemap (OT) algorithm.  However, the basic 
approach could be applied to any other treemap algorithm.  
QT’s input and output are similar to those of OT, but 
instead of returning a set of rectangles that precisely fill the 
specified input Box, it generates a set of rectangles that 
only approximate the input Box.  Because there is some 
wasted space, the resulting set of rectangles are usually 
larger than Box, but have close to the same aspect ratio.  In 
addition, QT takes an additional input parameter which is 
the aspect ratio of the elements to be laid out in Box.  
QT starts in exactly the same manner as OT, picking a 
pivot, subdividing the space, and recursively applying the 
algorithm to each sub-space.  It works in the same way 
until step 1 stops the recursion. 
At this point (step 1), rather then just unwinding the 
recursive stack, it adjusts the computed rectangle by 
modifying its dimensions, making it big enough for 
precisely the specified number of elements. 

 

Figure 4: The result of laying out a sequence of 4 
groups of elements (of size 3, 20, 20, 1) using ordered 
treemap (left) and quantum treemap (right) 

 

Figure 3: Basic layout strategy of the ordered
treemap algorithm.  The pivot is layed out in RP, and
L1…LP-1 are layed out in R1 while LP+1…Ln are layed
out in R2 and R3. 

R1 RP 

R2 

R3 
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Then, as the recursion unwinds, the caller must 
accommodate the generated rectangles which may not fit 
precisely into the box that was asked for.  This is the tricky 
part, and is captured in a modified version of step 6.  Since 
the rectangles generated by the recursive call may be bigger 
or smaller in either dimension than was asked for, the 
rectangles from the other regions must be moved so they 
don’t overlap, and possibly grown so they align nicely with 
neighboring rectangles.  As an example, see Figure 4 
(right).  Rectangle #4 was originally computed to have 
dimensions (1x1), but since Rectangle #3 was much taller, 
Rectangle #4 was stretched to be 4 units tall to match the 
height of Rectangle #3.  Similarly, Rectangle #1 was 
stretched to match the height of Rectangle #2. The new 
algorithmic steps are stated here: 

new 1. If n == 1, then compute a rectangle R that 
contains exactly L quantums in a grid arrangement 
that has an aspect ratio as close as possible to that 
of Box and stop. 

new 6. Recursively apply the ordered treemap 
algorithm to LA in R1, LB in R2, and LC in R3. 

new 6a. Translate the rectangles in RP, R2, and R3 to 
avoid overlapping R1 or each other. 

new 6b. Even out the rectangles in the sub-regions in 
the following manner.  Make sure that RP and R2 
have the same width.  Make sure that RP and R2 
together have the same height as R1.  Make sure 
that R3 has the same height as R1.  Each of these 
evening steps can be accomplished similarly by 
finding if one of the regions is too small.  Then if 
it is not wide enough, add the extra amount to the 
width of the rectangles in that region that touch 
the right boundary of the region. Do the analogous 
action to rectangles not tall enough. 

Element Aspect Ratio Issues 
QT assumes that all elements that will be laid out in the 
rectangles produced by QT are the same aspect ratio, and 
that aspect ratio is an input parameter to QT.  It turns out, 
however, that it is not necessary to modify the internal 
structure of QT to accommodate the element’s aspect ratio.  
Instead, the dimensions of the starting box can simply be 
stretched by the inverse of the element aspect ratio. 
Growing Horizontally or Vertically 
In step 1, the requested rectangle may be grown to 
accommodate the quantum element size.  There is a basic 
question of whether to grow this rectangle horizontally or 
vertically.  The simple answer is just to grow in the 
direction that results in a rectangle that most closely 
matches the aspect ratio of the original rectangle.  
However, the algorithm as a whole produces better layouts 
if it always grows horizontally (or vertically for layout 
boxes that are oriented vertically).   
The issue here is somewhat subtle, but is related to step 6b 
where the rectangles are evened.  If, for example, 
rectangles in R3 are made taller, than all of R1 and R2 will 

 

Regular Quad Snake
Figure 5: The result of applying the three stopping
conditions to a sequence of 4 groups of elements (of
size 3, 20, 20, 1). 

have to made taller as well to match R3.  If instead, the 
rectangles in R3 are made wider, than only the other 
rectangles in R3 will need to be made wider, and the 
rectangles in R1 and R2 can be left alone. 
In general, the evening aspect of the QT algorithm remains 
somewhat problematic.  While it works well for most data 
sets, it occasionally yields undesirable layouts due to too 
much wasted space.  This can happen when one region 
ends up growing a fair amount to accommodate data that 
doesn’t happen to fit the starting rectangles, and then the 
other regions have to be grown to match.  When these other 
regions are grown to match, the resulting rectangles are 
bigger than necessary, and there is wasted space. This 
doesn’t seem to be a problem for datasets unless they 
contain many regions with a very small number of elements 
(< 10).  In practice, it has not been a significant problem for 
the real image datasets I have viewed, although sometimes 
there is a little more wasted space than I would like. 
Stopping Condition Improvements 
Changing the stopping conditions and offering special 
layouts for a small number of special cases can produce 
substantially better total results.  The new stopping 
conditions apply equally to QT as well as to OT. 
The improvement is because the layout of rectangles 
depicted in Figure 5 (left) is not necessarily the one with 
the smallest aspect ratios.  In addition, it generates a layout 
that is somewhat difficult to parse visually because the eye 
has to move in 3 directions to focus on the 4 rectangles 
(vertically from #1 to #2, horizontally from #2 to #3, and 
then vertically from #3 to #4). 
The layout can be improved, and visual readability by 
offering two alternative layouts.  The first produces a 
“quad” of (2x2) rectangles.  The second produces a 
“snake” layout with all 4 rectangles laid out sequentially – 
either horizontally or vertically.  The snake layout can be 
equally well applied to 2, 3, or more rectangles.  
PhotoMesa applied it up to 5 rectangles.  Figure 5 shows 
the result of laying out a sequence of 4 groups of elements 
using the three strategies.  The new algorithmic step is: 

new 1a. If n == 4, then first try the regular layout by 
continuing and letting the recursion get down to 
the bottom level 

wallacjr
7



 

 

new 1b. If n == 4, then layout the 4 groups in a quad.  
Split Box into two with either a horizontal or 
vertical split (depending on the orientation of Box) 
based on the number of elements in the 4 groups.  
Then, split each of the remaining boxes in two 
with the opposite orientation based on the number 
of elements in those 2 groups. 

new 1c. If n == 4, then layout the 4 groups in a snake 
by dividing Box into 4 sub boxes (horizontally or 
vertically, depending on the orientation of Box), 
based on the number of elements in the 4 groups. 

new 1d. Compute the aspect ratios and wasted space 
of the 4 resulting rectangles from steps 1a, 1b, and 
1c, and use the layout with the best overall results. 

Since no one layout strategy always gives the best result for 
all input data, for 5 or fewer rectangles, PhotoMesa 
computes layouts using all strategies (original, quad, and 
snake) and picks the best one.  In practice, this strategy 
produces layouts with substantially squarer aspect ratios.  
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Figure 8: Bubblemap layouts of 10 groups of up to 200
rectangles.  Rectangular (left) and circular (right). 
becomes unattractive and wasteful.  While it may be 
possible to improve the quantum treemap algorithm, it is 
impossible to lay out images in a rectangle without 
sometimes leaving unused space.  An alternative approach 
is to give up on the idea that the space must be divided into 
rectangles, and instead allow more complex shapes. 
Bubblemap is a new algorithm that lays out groups of 
quantum-sized objects in an ordered layout with no wasted 
space per group, although there is some wasted space for 
the entire area.  The groups of objects can be created in 
different shapes, such as rectangular or circular, but the 
groups of objects only approximate those shapes, rather 
than define them exactly.  Figure 8 shows a rectangular and 
a circular bubblemap layout of 10 groups of up to 200 
rectangles per group.  The bubblemap algorithm has also 
been integrated into PhotoMesa as a user-selectable layout 
option.  Figure 9 shows the bubblemap algorithm applied to 
a set of images in PhotoMesa.  There is no wasted space, 
but the regions have arbitrary shapes. 
A more sophisticated approach to laying out related images 
in a grid has been pursued by Basalaj with his Proximity 
Grid algorithm [7].  It takes a set of objects with a high-
dimensional set of relationships and generates a grid layout 
of those objects so that similar objects will be near each 
other on the grid.  Bubblemaps, on the other hand, are 
much simpler and assumes the input is pre-clustered.  They 
keep the clusters of images together, rather than optimizing 
an n-dimensional set of relationships. 
The bubblemap algorithm is completely different than the 
treemap algorithm.  Rather than subdividing rectangles, it 
is based on a standard pixel-based bucket fill algorithm.  It 
works by filling cells in a grid, keeping track of which cells 
get assigned to images from which group.  It fills the cells 
one group at a time.  By using different algorithms to select 
the next cell to fill, the shape of the groups can be 
controlled.  The basic algorithm runs in O(n) time for n 
images.  The basic algorithm follows: 
Input: L1...Ln, Aspect Ratio 

1. Compute the size of the overall grid based on total 
number of images to layout, and the desired 
resulting aspect ratio. 

2. Create a grid of size computed from step 1, and set 
each cell to the value UNASSIGNED. 

3. For each group of images, Li, call the fill 
algorithm, starting at step 4, and then stop. 

4. Find the starting point to fill by looking for the 
first UNASSIGNED cell in the grid (in left-right, 
top-bottom order).  Initialize a   list of cells, called 
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CONCLUSION 
This paper presents PhotoMesa, a zoomable image 
browser, and two new algorithms for laying out groups of 
images or other fixed-size visual objects.  The primary 
innovations are: 1) a simplified set of interactions for 
navigating through a set of objects in a zoomable user 
interface; and 2) algorithms to lay out fixed-size objects, 
such as images, in two-dimensional space, automatically 
creating groups for related objects. 
By bringing together the aforementioned innovations with 
existing zoomable user interface technology, PhotoMesa 
offers a significant advance in the ability to comfortably 
browse large numbers of images. Based on its initial 
popularity and enthusiastic feedback, PhotoMesa appears to 
have satisfied its initial design goals of being simple to use 
in a family setting, requiring no setup time, and naturally 
supporting co-present use. 
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